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Experiments Settings

® LLM Agent: State Representation: Environmental prompts p“‘"; Action Space: Discrete subtasks G: Feedback Mechanism: Hard/soft verification
RL Agents: Observation Space: Environment + Subtask info.; Action Space: Primitive actions; Reward: Environment + Subtask rewards
]
- The LLM Agent: Strategic planning and subtask allocation The Reinforcement Learning Agents: Execute primitive actions.
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[1] & ( & ) P ge ( To extract key information from the simulation RL agents perceive environments partially, observing general

environment as environmental states. local environment information and subtask-related information.

agents) scenarios implemented in this study.

Action:

@ RL agents take actions follow the default configurations of the
benchmark environments. For example, actions in MOSMAC
are no-op, movement in four directions and stop.

Reward function:
i el gt
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Environment Translator w:
w: SEnv N PLLM

a To map numerical environmental states into
environmental prompts.

RL agents balance immediate environmental reward with
subtask-related reward towards completing their subtasks.

Prompt Construction:

A B To construct inputs that incorporate system prompts
MOSMAC [2] scenarios implemented in this study. In each and existing environmental prompts utilized for

scenario, four units perform navigate tasks. LLM's inferencing.
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L2M2 demonstrates superior and : | L2M2 is an efficient and novel method for addressing challenging multi-agent problems, benefiting from
' the power of pre-trained language models.
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