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Motivation: The Challenge of Long-Horizon Multi-Agent Tasks
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Problem lllustration: Multi-agent navigation in complex environments. Agents must coordinate to avoid obstacles and reach goals.
Long-horizon planning required for strategic pathfinding. MARL methods generally underperform in our test in such scenarios.

@ core Problem
MARL agents struggle with long-horizon sequential planning and coordination tasks that require
sustained strategjc thinking and temporal abstraction.

Current MARL Limitations Existing Hierarchical Approaches
e Sample Inefficiency  Domain Knowledge Dependency
Requires millions of steps to learn complex behaviours Require manual subtask definition
* Exploration Challenges * Limited Transferability
Large state-action spaces are hard to explore Task-specific policies don't generalize
 Temporal Credit Assignment * Costly Retraining
Difficulty linking actions to distant rewards Need to train high-level controllers from scratch

* Non-Stationarity Scalability Issues
Environment changes as other agents learn Struggle with large agent population 2
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L2M2 Architecture: LLM + MARL Integration

L2M2 integrates the strategic planning strengths of Large Language Models (LLM) with the accurate
execution skKills provided by Multi-Agent Reinforcement Learning (MARL).
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LLM Agent: State Representation: Environmental prompts pLLM; Action Space: Discrete subtasks G: Feedback Mechanism: Hard/soft verification
RL Agents: Observation Space: Environment + Subtask info.; Action Space: Primitive actions; Reward: Environment + Subtask rewards
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The Large Language Model Agent

The environment translator w enables robust communication between LLM and RL
agents, which process natural language and numerical signals separately.

Environmental State:
Env

st = (¢t b, e, Ay detq)
To extract key information from the simulation
environment as environmental states.

Environment Translator:
a T GEnD . pLLM

To map numerical environmental states into
environmental prompts.

Environmental prompt:

B To construct inputs that incorporate system
prompts and existing environmental prompts

utilized for LLM’s inferencing.

LLM’s Decision-making:

at™ = {gi,, € Gli €{1, ..., n}}
LLM agent generates temporally
abstracted subtasks from the set of

available subtasks G for n RL
agents.

Verification on output format
and action validity.
Self-correction with error
descriptions if error occurs.
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The reinforcement learning (RL) agents operate under the centralized training
decentralized execution framework, taking subtask g as part of observation.

H . i —_ eri gli
Observation:  o; = (0", 0;")
RL agents perceive environments partially,

observing general local environment
information and subtask-related information.

Action:

RL agents take actions follow the default

settings of the benchmark environments.

For example, actions in MOSMAC are no-

op, movement in four directions and stop.

Reward:
rti = rte’l + 13 *
RL agents balance immediate

environmental reward with subtask-related
reward towards completing their subtasks.

%~ Obstacle

Obstacle
‘/

@ RL agents’ reference points of terrain info. # RL agents’ mvt. dist. per step
O LLM agent’s subtasks targets and reference points of terrain info.
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Experiments: VMAS and MOSMAC

VMAS Environment [1] MOSMAC Environment [2]
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The VMAS navigation (four RL agents) and passage MOSMAC scenarios implemented in this study. In
(five RL agents) scenarios implemented in this study. each scenario, four units perform navigate tasks.

Baseline Comparisons
Non-Hierarchical MARL methods (End-to-end training)
Hierarchical methods (end-to-end training and direct integration):
Rule-Based Controller + MARL [3]
HiSOMA [3] (FALCON + MARL)
L2M2 (LLM + MARL)

[1] Matteo Bettini, Ryan Kortvelesy, Jan Blumenkamp, and Amanda Prorok.2022. VMAS: A Vectorized Multi-agent Simulator for Collective Robot Learning. In Distributed Autonomous Rototic Systems. 6
[2] Minghong Geng, Shubham Pateria, Budhitama Subagdja, and Ah-Hwee Tan.2025. MOSMAC: A Multi-agent Reinforcement Learning Benchmark on Sequential Multi-Objective Tasks. AAMAS "25.
[3] Minghong Geng, Shubham Pateria, Budhitama Subagdja, and Ah-Hwee Tan. 2024. HiSOMA: A hierarchical multi-agent model integrating self-organizing neural networks with multi-agent deep reinforcement learning. ESwA.
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[ L2M2 demonstrates superior performance and sample efficiency (20%).

VMAS Scenarios
L e e e » 0.10. —e— MARL (QMIX)
g o —=— HiSOMA (FALCON+QMIX)
2 0.8 & 0.084 —— L2M2 (Llama 3.1 8B+QMIX)
c | y c
B - S = 0.06-
B o | /" —— MARL (QMIX) .
S - —=— HiSOMA (FALCON+QMIX) L 0.041
o 05 ---- HiSOMA (FALCON+QMIX) (DI) ©
%’ : —— L2M2 (Llama 3.1 8B+QMIX) :% 0.02
0.0 # —= L2M2 (Llama 3.1 8B+QMIX) (DI) 0.00 . o
0 200k 600k  1.0M 0 200k 500k 1.0M 1.5M
Timesteps Timesteps
VMAS Navigation VMAS Passage
MOSMAC Scenarios
Metrics Rule-based Control ~ HiSOMA (DI) L2M2 (DD) Metrics End-to-End Policy Transfer
RBC w. QMIX FALCONw. QMIX | Llama 3.18B w. QMIX MARL HiSOMA (OD) | L2M2 (DI)
- Avg. Win Rates (%)
g, Win Rates (%) 83,13 4 1096 9438 & 140 98.75 4 2.50 (mfan and std) 0.00+£0.00 14.68 + 14.14 | 68.13 +25.14
Avg. Returns Avg. Returns
(mean and std) 9.45 £ 0.85 10.82 4= 0.13 9.92 £ 0.21 (mean and std) 0.73 £0.09 7.65 +2.49 9.39 £ 2.06
MOSMAC with subgoals MOSMAC without subgoals
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Kernel density estimation reveals that L2ZM2's LLM agent automatically generates
strategic navigation paths that avoid challenging terrain features.
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LLM Action Density Map

Heat map showing spatial distribution of LLM’s action
selections using kernel density estimation

Key Observations: LLM perform strategic path

selection with zero-shot planning:
* High density in central regions with short path
* Low density near cliffs and ramps
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Conclusion

L2M2 is an efficient and novel method for addressing challenging multi-agent problems,
benefiting from the power of pre-trained language model.
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Key Benefits of L2M2 Framework Future Extensions of L2M2

Zero-Shot Planning: Immediate strategic Multi-Level Hierarchy: Extend to 3+ level

guidance from pre-trained LLMs hierarchies for complex task decomposition

Sample Efficiency: 80-85% reduction in Dynamic Subtask Generation: LLM

training samples automatically create new subtasks

Generalizability : Adaptable to different Heterogeneous Agent Teams: Different

MARL algorithms and LLMs agent types with specialized capabilities
Contact Information Thank You!

(=] Minghong Geng: mhgeng.2021@phdcs.smu.edu.sg

@ nttps://gengminghong.github.io

J®| Code: Available upon publication at https://github.com/smu-ncc

@ Neural and cognitive computing group
https://sites.google.com/smu.edu.sg/neural-and-cognitive-computing 9
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